Temporal Light Artefacts (Flicker)
A Quality Requirement for GSLs

FORTALECIMIENTO DE ESTÁNDARES DE EFICIENCIA ENERGÉTICA EN ILUMINACIÓN
Primera Reunión y Taller Presencial del Grupo Técnico de Eficiencia Energética (GTEE)

Steve Coyne
6 Nov 2019
Table of Contents

1. Overview of the Problem
2. IEC Technical Reports
3. Products Tested
4. Requirements Proposed
Light Variation with Time

• Temporal variation in light output from a light source known as Temporal Light Modulation (TLM)

• TLM can have visual and non-visual effects on a person.

• The term for these effects, as defined by CIE, is Temporal Light Artefacts (TLA).

• There are three main situations where TLAs are visually perceivable.
Flicker

- Light source: stationary but varies in intensity or colour
- Observer’s eyes: not moving (i.e., without saccades)
- Illuminated object: stationary
 - Variation in light: above threshold of visual perception
 - Visual effect: light is flashing

http://bestanimations.com/HomeOffice/Lights/Bulbs/Bulbs.html
Stroboscopic Effect

Light source: stationary but varies in intensity or colour

Observer’s eyes: not moving (ie without saccades)

Illuminated object: moving (translation or rotation)
 • Variation in light: above the threshold of visual perception
 • Visual effect: impression that the object is moving at a different rate to its actual translation or rotation speed
Phantom Array Effect (Ghosting)

- Light source: stationary but varies in intensity or colour
- Observer’s eyes: moving (e.g., large eye movement known as saccades)
- Illuminated object: stationary
 - Variation in light: above the threshold of visual perception
 - Visual effect: gives the impression of a ghosting trail of the object in a person’s vision.
Human Health Effects

• Non-visual effects have been reported as physiological and psychological manifestations including:
 - Migraine
 - Eyestrain
 - Seizures
 - Reduction in task performance
 - Anxiety
 - Autistic behaviour
 - Vertigo
 - Reduction in task performance

• Research activities on visual and non-visual effects of TLAs have endeavoured to establish the:
 - light modulation frequencies and
 - associated thresholds of activation
Human Health Effects

<table>
<thead>
<tr>
<th>Biological Effect</th>
<th>Frequency range reported</th>
<th>Other conditions reported</th>
<th>Suggested low risk level requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visible flicker</td>
<td>0.5 – 35 Hz (8.8 Hz peak sensitivity)</td>
<td>Low threshold for % modulation</td>
<td>Short-term flicker metric, P<sub>st</sub> LM < 1 (IEC 61000-4-15)</td>
</tr>
<tr>
<td>Photosensitive seizures</td>
<td>3 – 65 Hz (15-25 Hz peak sensitivity)</td>
<td>Visual field ≥ 0.006 sr
 Luminance change ≥ 20 cd.m<sup>-2</sup></td>
<td>≤ 5% Light modulation (frequency independent) or
 ≤ 20 cd.m<sup>-2</sup> variation for 3 – 65 Hz</td>
</tr>
<tr>
<td>Stroboscopic effect (moving object)</td>
<td>50 – 2000 Hz</td>
<td>High % modulation
 Low duty cycles for PWM</td>
<td>Stroboscopic effect Visibility Measure, SVM ≤ 1.6 (NEMA 77)</td>
</tr>
<tr>
<td>Phantom array (eye movement: Saccades)</td>
<td>50 – 3000 Hz</td>
<td>High % modulation
 Longer saccades</td>
<td>More research required</td>
</tr>
</tbody>
</table>

Human Health Effects

<table>
<thead>
<tr>
<th>Biological Effect</th>
<th>Frequency range reported</th>
<th>Other conditions reported</th>
<th>Suggested low risk level requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Migraine</td>
<td>• Unknown (But flicker confirmed as trigger)</td>
<td>• None</td>
<td>• More research required</td>
</tr>
<tr>
<td>Autistic behaviour</td>
<td>• Unknown (But indication of flicker as trigger)</td>
<td>• None</td>
<td>• More research required</td>
</tr>
</tbody>
</table>
| Task performance and eyestrain | • < 1250 Hz | • % modulation
 • Duty cycle for Pulse Width Modulated light output | • ≤ 1% Light modulation (frequency independent) or
 • Frequency ≥ 1250 Hz |

Mapping the Effects with Frequency Regions

<table>
<thead>
<tr>
<th>Modulation frequency (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>---------------------------</td>
</tr>
<tr>
<td>Biological effects</td>
</tr>
<tr>
<td>--------------</td>
</tr>
<tr>
<td>visible flicker</td>
</tr>
</tbody>
</table>

- Visible flicker
- Photosensitive seizures
- Stroboscopic effect (moving object)
- Phantom array (saccade eye movement)
- Task performance and eyestrain
- Flicker vertigo
- Migraine
- Autistic behaviour
- Panic attack/anxiety
CIE Recommendations

CIE TN 006: 2016. CIE Technical Note: Visual aspects of time-modulated lighting systems – Definitions and measurement methods.

Scope:
- Visibility of temporal light artefacts

Out of scope:
- Application specific acceptability thresholds
- Non-visual effects
- Chromatic flicker

- **Recommends** Short Term Flicker metric, P_{st}^{LM} (from IEC)
- Defines and **recommends** Stroboscopic Visibility Measure (SVM)
- Defines Phantom Array effects

NOTE: P_{st}^{LM} and SVM are normalised parameters such that a value of 1.0 is when a person with normal vision will perceive the effect 50% of the time.
% Modulation metric

Simple waveforms

\[
\text{Amplitude} = E_{\text{Max}} - E_{\text{Min}}
\]

Complex waveforms

\[
\text{Modulation} = \frac{\text{Amplitude}}{\text{DC component}} = \frac{(E_{\text{Max}} - E_{\text{Min}})}{(E_{\text{Max}} + E_{\text{Min}})}
\]
Determining Frequency Elements of Complex Waveforms
Possible causes for temporal light modulation

- Light source technology and its driver topology (poor product design)

- Dimming technology of externally applied dimmers or internal light level regulators (poor compatibility)

- Mains voltage fluctuations intentionally applied for mains-signalling purposes (poor immunity)

- Mains voltage fluctuations caused by electrical apparatus connected to the mains (conducted electromagnetic disturbances) (poor immunity)
1. Overview of the Problem
2. IEC Technical Reports
3. Products Tested
4. Requirements Proposed
IEC TR 61547-1 Ed 2 2017: Short term Flicker, P_{st}^{LM}

Equipment for general lighting purposes – EMC immunity requirements – Part 1: An objective voltage fluctuation immunity test method

1. **Scope**

This part of IEC 61547 describes an objective light flickermeter, which can be applied for the following purposes:

- testing the intrinsic performance of all lighting equipment without voltage fluctuations;
- testing the immunity performance of lighting equipment against (unintentional) voltage fluctuation disturbance on the AC power port;
- testing the immunity performance of lighting equipment against intentional voltage fluctuation on the AC power port arising for example from ripple control systems.

- Describes an objective light flickermeter, including test conditions
- P_{st}^{LM} calculation is a weighted percentile formula based on voltage variations creating perceptible flicker from a 60W incandescent lamp

![Diagram](image-url)
Equipment for general lighting purposes –
Objective test method for stroboscopic effects of lighting equipment

Scope

The type of equipment under test (EUT) may depend on the purpose of the test. For instance, the following different application tests may be considered (see Figure 2):

- Testing the intrinsic performance of lighting equipment such as luminaires, controlgear or integrated lamps;
- Testing the performance of lighting equipment under dimming conditions.

Figure 1 – Schematic of the stroboscopic effect measurement method

Source: IEC TR 63158: 2018
Guidance on Limits

- IEC TR 61547-1 does not provide guidance on PstLM limits
- IEC TR 63158-1 does not provide guidance on SVM limits
- NEMA 77:2017 guidance is SVM ≤ 1.6 (page 30, Table 6 in Section 7: Recommendations):

<table>
<thead>
<tr>
<th>Application area</th>
<th>P_{st} limit</th>
<th>SVM limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outdoor</td>
<td>≤ 1.0</td>
<td>None</td>
</tr>
<tr>
<td>Indoor</td>
<td>≤ 1.0</td>
<td>≤ 1.6</td>
</tr>
</tbody>
</table>

- This level relates to the SVM limit on linear fluorescent lamps on magnetic ballasts ($SVM \approx 1.4 - 1.6 @ 100 \text{ Hz}$).
- This would mean the majority of the population would experience stroboscopic effects.

Source: NEMA 77:2017
Another important point is the probability levels assigned to thresholds differ in terms of the proportion of the population affected. The threshold limit levels are defined as:

- 50th percentile of the population, or
- Low risk level (possibly 90th – 95th percentile of the population)
- No observable effect level (possibly 99th – 100th percentile of the population)

- SVM and P_{st}^{LM} limits of 1 are defined for a person with normal vision observing the phenomenon 50\% of the time.
Mapping All Elements with Frequency Regions

<table>
<thead>
<tr>
<th>LED modules & Driver circuits – typical modulation frequency ranges</th>
<th>Biological effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC ccts</td>
<td>Flicker vertigo</td>
</tr>
<tr>
<td>LEDs with phase cut dimmers</td>
<td>Panic attack/anxiety</td>
</tr>
<tr>
<td>Failure of LED string or rect cct</td>
<td></td>
</tr>
<tr>
<td>Electrical imbalance in LED strings</td>
<td></td>
</tr>
<tr>
<td>very low quality driver design & components</td>
<td></td>
</tr>
<tr>
<td>Pulse Width Modulated ccts</td>
<td></td>
</tr>
<tr>
<td>Full wave rectification cct</td>
<td></td>
</tr>
<tr>
<td>Parallel ½ wave LED string ccts</td>
<td></td>
</tr>
<tr>
<td>Switch Mode Power Supplies</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Standards and other bodies (Proposed metrics)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IEC: Flicker Meter - P_{st} limit</td>
<td>IEEE: Freq based % modulation limits</td>
</tr>
<tr>
<td>CIE recommends: P_{st} limit</td>
<td>CIE: Freq based modulation limits - Stroboscopic Visibility Measure (SVM) & Phantom Array Measure</td>
</tr>
<tr>
<td>IEEE: Freq based % modulation limits</td>
<td>CEC: time based % modulation limits with low pass filters</td>
</tr>
<tr>
<td>LRC Assist: freq based mod limit</td>
<td></td>
</tr>
</tbody>
</table>

Graphical Elements:
- DC ccts
- Modulation frequency (Hz)
- Biological effects include:
 - Visible flicker
 - Photosensitive seizures
 - Stroboscopic effect (moving object)
 - Phantom array (saccade eye movement)
 - Task performance and eyestrain
 - Flicker vertigo
 - Panic attack/anxiety
- LED modules & Driver circuits – typical modulation frequency ranges
- Standards and other bodies (Proposed metrics)
Table of Contents

1. Overview of the Problem
2. IEC Technical Reports
3. Products Tested
4. Requirements Proposed
Test results on lamps

Light Waveform

Spectral content - flicker region

Spectral content - stroboscopic region
Test results on lamps

Light Waveform

- DF = 100 Hz
- MD = 25.39%
- Fl = 7.07%
- Pst = 0.7124
- SVM = 0.8530

Spectral content - flicker region

- Light modulation (rel)
- Frequency (Hz)
- Spectral components
- Pst Sensitivity Curve

Spectral content - stroboscopic region

- Light modulation (rel)
- Frequency (Hz)
- Spectral components
- SVM Sensitivity Curve
Test results on lamps

Light Waveform

- DF = 100 Hz
- MD = 102.61%
- FI = 47.78%
- Pst = 0.2001
- SVM = 5.0730

Spectral content - flicker region

Spectral content - stroboscopic region
Test results on lamps

Light Waveform

DF = 100 Hz
MD = 100.46%
EI = 27.65%
Pst = 21.0454
SVM = 3.0462

Spectral content - flicker region

Spectral content - stroboscopic region
European Lamps Tested by CLASP

80% models tested already compliant with requirements
European Lamps Tested by CLASP (...zoom in)

Should the PstLM value be made more ambitious?
Table of Contents

1. Overview of the Problem
2. IEC Technical Reports
3. Products Tested
4. Requirements Proposed
Recommended draft MEPS

- Draft requirements contained in draft MEPS document

<table>
<thead>
<tr>
<th>Metric</th>
<th>Mandatory Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harmonics</td>
<td>Compliance with IEC 61000-3-2</td>
</tr>
<tr>
<td>Short term flicker indicator (P_{st,LM})</td>
<td>(\leq 1.0^1) at full load and a sinusoidal input voltage.</td>
</tr>
<tr>
<td>(for non-CFL)</td>
<td>Note: compliance with IEC 61547-1</td>
</tr>
<tr>
<td>Stroboscopic effect visibility measure (SVM)</td>
<td>(\leq 0.4) at full load and a sinusoidal input voltage.</td>
</tr>
<tr>
<td></td>
<td>Note: compliance with IEC TR 63158</td>
</tr>
<tr>
<td>Photobiological risk group</td>
<td>For the blue light hazard: RG0 or RG1 are allowed.</td>
</tr>
</tbody>
</table>
Thank you, any questions?

Steve Coyne
Consultant
Director
Light Naturally
T: +61 413 314 346
E: steve@lightnaturally.com.au

Michael Scholand
Senior Advisor
Policy & Analysis Team
CLASP | Europe
T: +44-7931-701-568
E: mscholand@clasp.ngo