Removing Barriers to Private-Sector Development of Geothermal Resources

Presented Under the Auspices of the Organization of American States by:

A. John Armstrong
OAS Legal Consultant
Mark Lambrides
OAS Director Unit for Sustainable
Development

15 April 2005

- Thesis: Any country with geothermal resources can develop those resources.
- Consideration of Policy Requirements
 - At what price?
 - Does this goal compromise competing goals?

The Issue

- Energy Crisis
- Climate Change Crisis
- Latin American Issues

Global competition for energy resources

2005 rowth of consumer 800eMildioiesGars

Asian sub-continent

Latin America Electricity generation of redominantly:

1. Hydrocarbon-based

generationing & Indiance

highly sensitive to-oil. & Polisoprice

fluctuation

2. Hydroelectricity

The Challenge

 Need to resort to alternative energy source in context of increasing demand

Need to become self-reliant in energy generation

Need to preserve the environment

Need to take action in the near future

The Opportunity

Execute a Geo-Green Strategy

- Domestic Energy Security
- Regional as well as National capacity markets
- Geothermal-energy based electricity generation as element of Geo-Green Strategy
 - Vast untapped energy source
 - Renewable & environmentally friendly
 - Increasingly cost effective & commercially viable
 - Insensitive to external shocks (drought and oil & gas price fluctuations)

The Goal

Create conditions for "best case" commercial development of geothermal energy

- "best case"
 - Maximum Power
 - Low Cost Electricity
 - Safe Conditions
 - Environmental Protection

Cornerstones of Geothermal Development

Cornerstone 1 Resources

Barriers: What is there to develop?

Limited identification of resource potential

(beyond initial inventory / surface studies)

- No commercial-quality
 resource identification
 (geology, geochemistry mapping, geophysics)
- No <u>confirmation</u> of potential energy supply

(drilling of shallow wells or deeper wells)

15 April 2005

Resources

Barriers: What's the risk cost?

The Risk Mark-up Equation

Unproven Resource =
Development Uncertainty =
Up-front Investment =
Risk Mark-up

- Results of high risk mark-up
 - Little / no competition when geothermal development is tendered
 - Reliable developers limited (or no investor interest)
 - high tariffs in resulting PPAs

Cornerstones of Development: Examples

Removal of Resource Barriers

Policy: Reduce Up-front Risks by establishing greater certainty of the control of the control

Action:

- Initiate commerce geochemistry, ma
- Confirm potentia /deeper wells

■ Tools:

- Risk guara.
- Regional netwo
- International res

Risk guarantee fund –
Sustainable fund mitigating investor drilling risk at exploration, appraisal, production drilling stage

Regional network -- pool technical equipment, experts, & geothermal-development related documents

International resources (more

15 April 2005 *later*)

Cornerstone 2 Financing: Threshold Issues

Geothermal development cost is

"front-end loaded",

consequently, Private-sector development depends on

"project financing"

Financing: Threshold Issues "Front-end-loaded Costs"

Bulk of the cost of a geothermal facility is in the technology effort exerted at the outset of project.

 Project total lifetime cost represented by initial capital cost, & will be incurred before project ever comes on line.

Zunil

Location: Guatemala Operator: Orzunil de Electricidad Ltd Configuration: 24 MW binary

15 April 2005

Financing: Threshold Issues "Project Financing"

- Consequently, the majority of new generation facilities are funded through Project Financing, whereby the principal and interest (and profit) are paid from the proceeds of the project.
- Project financing is secured by Power Purchase Agreements (PPAs) – multi-year commitments between generators and distributors (or a major end user) that guarantee the purchase of capacity & electricity at a predictable price.

Financing Barriers

- Multi-year PPA laws
- Focus on short insufficient long-te enables generation
- Few incentives facilities
- Project not a c
- Economconstruction, aunits & remote loc

Large plants >30 MW. Direct Costs US \$/kW installed capacity (per World Ban):

High quality res Cost \$1150-1750/kW = 5-8c/kWh 2002 = 3-5c/kWh 2007

er National Renewable

Medium quality res \$1350-2200/kW

Small plants<5MW, resource/location dependant, \$1600-3000/kW

15 April 2005

Cornerstones of Development: Examples

- Bolivia
- Chile ?

- Colombia
- Costa Rica
- Ecuador
- El Salvador
- Guatemala
- Honduras
- Mexico
- Nicaragua
- Panama
- Peru

15 April 2005

Removal of Financial Barriers through Policy Initiatives

 Policy: Establish tariff structure conducive to promoting geothermal development

Action:

- Set tariffs sufficiently high to allow for cost recovery & appropriate return on equity
- Provide conditions for appropriate recovery rate -- Ensure multi-year PPAs

Removal of Financial Barriers through Policy Initiatives

- Policy: Institute Development Drivers
- Action (Domestic):
 - Incentives (Tax Credits, etc.)
 - Renewable Portfolio Standard
 - Small Power Grid Solutions
 - Green Pricing programs
- Action (International Incentive programs)
 - Kyoto Protocol
 - Clean Development Mechanism
 - Joint Implementation
 - Carbon Financing Mechanisms
 - Global Environmental Fund

Cornerstone 3 Markets

Barriers

- Location, location, location
 - Access to population or manufacturing centers
 - Access to reliable transmission lines
 - Grid Connectivity
 - Proximity to developers
 - Access to area for heavy equipment & generators
 - Terrain
 - Infrastructure
 - Ports

Cerro de Pasco Mine Peru

15 April 2005

Cornerstones of Development: Examples

- Bolivia
- Chile
- Colombia
- Costa Rica
- Ecuador
- El Salvador
- Guatemala
- Honduras
- Mexico
- Nicaragua
- Panama
- Peru

Removal of Market Barriers through Policy Initiatives

 Policy: Enable remote generation sites market access

Action:

- Facilitate reliable Transmission Lines & Grid Connectivity
- Facilitate Regional Grid & multi-nation import / export market
- Enable Mini-Grids in remote areas consider generation /distribution / transmission /monopoly for universal electrification

Removal of Market Barriers through Policy Initiatives

- Policy: Engage developers
- Action:
 - Familiarization Program. If proximity to developers is barrier, institute outreach
 - Due Diligence Guidelines. Craft to pre-qualify developers
 - Promotion Director. Appoint (&Fund)
 - One-stop Shop. Time is money. Facilitate permit / Concession process.
 - Prioritize: Do not focus development promotion on areas inaccessible due to terrain / infrastructure –except for economic development reasons

Cornerstone 4 Policy

Private Investment Pre-requisites

- Pre-requisites for private investment are
 - a stable political environment
 - a reliable legal environment
 - an effective regulatory framework
- Clear & reliable off-take rules stipulated in PPAs crucial

Mexico

La nueva vida legislativa

23

Cornerstones of Development: Examples

- Bolivia
- Chile
- Colombia
- Costa Rica
- Ecuador
- El Salvador
- Guatemala
- Honduras
- Mexico
- Panama
- Peru
 Peru
 April 2005

8 Step Policy Process

- Step 1. Prioritize national economic, infrastructure & energy goals
- Step 2. Determine objectives in electricity sector
- Step 3. Establish role of geothermal resources in energy mix
- Step 4. Determine geothermal energy objectives
- Step 5. Identify existing & potential impediments
- Step 6. Identify available mechanisms to remove the barriers to achieving renewable energy policy objectives
- Step 7. Design a legal vehicle
- Step 8. Design a regulatory vehicle

Regional Development Approach

Regional Development Approach

Objective:

- National development develop geothermal resources in every country in region
- promote regional economic development
- take advantage of Economies of Scale

Regional Approaches: Central America

Integration of electricity markets in Central America and southeastern Mexico is moving forward with implementation of two initiatives:

- Sistema de Interconexión Eléctrica de los Países de América Central Central (SIEPAC)
- Plan Puebla-Panamá

Regional Approaches:

- Andean Community (1996) Bolivia, Colombia, Ecuador, Peru, & Venezuela
- Three major areas for action:
 - Construct energy markets
 - integrate physical networks &
 - harmonize regulatory frameworks
 - Promote private entrepreneurial development in energy clusters & in energy services
 - Position Sub Region in international hydrocarbon markets

Regional Concept Study: African Rift Valley & Geo-Caraïbes

Goal: overcome technical constraints & remove early-stage uncertainty of resource availability on a regional basis

- Risk Mitigation
- Capacity Building

African Rift & GeoCaraibes Risk Mitigation ...

Endowed Fund

- Mitigates risk of resource availability for exploration
- Mitigates risk high-risk, early-stage drilling
- Covers loss of unproductive wells
- Provides successive investments into geothermal development in the region

African Rift & GeoCaraibes Capacity Building ...

- Facilitate transition of geothermal development from public to private responsibility
- Ensure sound & transparent tendering processes
- Ensure adequate PPAs
 - Base on sound bankable feasibility studies
 - Balance private investors' & public interest
- Establish regional network
 - Data base of experts & documents
 - Pool technical equipment

Removing Barriers to Private-Sector Development of Geothermal Resources: Conclusions

- Crisis
- Geothermal Development -- one solution
- Developmental Policy -- precondition
- Four Cornerstones
- Any country with geothermal resources can develop those resources.

Policy Resources

The Renewable Energy Policy Manual

 http://www.oas.org/reia/english/Docu ments/RE_policy_manual.htm

Preguntas?

April 2005

Costa Rica	2900	152.5	•	n		No specific Law for Geothermal (1999)
Ecuador	00	atin .	American	Ke	sourc	ces
El Salvador	2210	160				No specific Law for Geothermal (1999)
Guatemala	3500	29				No specific Law for Geothermal (1999)
Honduras	990	0				No specific Law for Geothermal (1999)
Mexico	6510	960 (2003)				Geothermal undert Water Laws. Government (CFE) Controlled Commercial limited to build / operate (leased to CFE) or designated areas
Nicaragua	3340	77.5				Ley de Geothermia (2002) "fast-track" geothermal development program with significant support from the private sector.
Panama	450	0	El Valle de Anton			No specific Law for Geothermal (1999)
Peru 15 April 200	2900)5	0				Organic Law on Geothermal Resources(Ley

Additional Slides

What Investors Want!

- Renewable Projects which make money!
- Consistent Government Tax Policy, better yet, a national tax incentive
- "Real" equity investors want more tax investors
- Developers who are honest
- PPAs at fixed prices with healthy utilities
- More debt investors

What Investors Avoid!

- "Merchant" geothermal projects
 - Projects without PPAs
- Market rate PPAs
 - Capital Cost vs. Fuels Cost Conundrum
- Technology risk
 - New or Scale-up Technology

Policy: Benefits of private investment in geothermal-energy development

- Geothermal-energy development implies high investment costs, incurred up-front in the context of resource exploration.
- Private investment enables the substitution of scarce public funds by private capital.
- Up-front investment = risk which can be better dealt with by geographically diversified private investors.
- Complexity of geothermal technology & development
- Proven private investors can be expected to cope professionally with challenge, thus ensuring state of the art technology

***Primary Geothermal Investment Issues

Ranked in order of priority

- Resource Risk
 - Temperature Decline
 - Overdraw of Reservoir (CA geysers)
 - Re-injection/Production well communication
 - Excess Dissolved Solids
 - Turbine/Heat Exchanger Fouling
 - Re-injection Well Fouling
- Off-taker Risk
 - Most Geothermal resources located in western U.S. where "troubled" electric utilities abound
 - PG&E, SCE, Sierra Pacific, Nevada Power

***Primary Geothermal Investment Issues

Ranked in order of priority (continued)

- Environmental Risk
 - Well blowouts not uncommon
- Transmission Access
 - Due to remote locations of resource, TA can be a problem.

Geothermal Resources Areas

LAND

Geothermal Resources Area

> Known Geothermal Resources Area

Stages of Geothermal Power Production

Phase I Reconnaissance nimal environment

minimal environmental impact

Permit I
< 2 years
1 year extensions

Phase II Exploration

Drilling shallow temperature gradient wells

Permit II
< 2 years
1 year extensions

Stages of Geothermal Power Production

Phase III
production injection wells
injection wells

License <5 years 2 year extensions

Phase IV
Resource Production
steam

License <5 years 2 year extensions

Stages of Geothermal Power Production

Phase V
Electricity Production
electricity

Concession 30 Years 5 Year Extensions

Transmission

Bi-lateral Treaty

Classes of Geothermal Resources

 Class I Capable of being used to generate electrical energy

 Class II Used other than to generate electrical energy = direct heating, agriculture, recreational bathing

 Class II Grantee shall hold harmless Class I Grantees if development of Class I Geothermal Resources affects the Class II Geothermal Resources

Policy: Safety, Environment & Compliance

- Acknowledging that the Region has limited resources:
 - Balance government regulation & self-regulation
 - Identify public interest being fostered or protected
 - Identify tools that can accomplish this task with least disruption to the market & least cost to the public
 - Focus regulatory regime on ...
 - ... safety
 - ... environment &
 - ... avoid micro-management.

Policy: Economic & Financial

- Fees. Balance ...
 - fees charged to cover Government's <u>cost</u> in issuing permits, licenses, concessions, & regulating for the public welfare, with
 - enabling projects to succeed
- Royalties. Resources belonging to State should return their value to the State
- Taxes. Balance ...
 - taxes owed by a corporate citizen receiving State services, with
 - <u>facilitating</u> Geothermal Resource development with front-endloaded financing

*** Financing: Investor Concerns and Issues

- Investment Return and Exit Strategy
- What return over what time horizon?
- How is return earned? (cash, tax credits or both)
- Exit Strategy? (hold or turn over)
- Technology
- How many? How Long?
- Resource Risk
- How Much? How Long?

*** Economics:

Investor Concerns and Issues Contractual Risk (continued)

- Who is obligated to do what for how long and at what price?
- PPA (Take or pay? Fixed or variable rates? Reg. Out?)
- O&M (Turnkey? Routine? Fixed or cost plus?)
- Land Lease (Term? Rent/Royalty based on gross or net?)
- EPC Contract (Turnkey? Fixed Price? LD's for time etc.?)
- Equipment Warranty (Term-what does it cover?)
- Environmental Risk
- Existing or potential damage to the environment?

51 15 April 2005