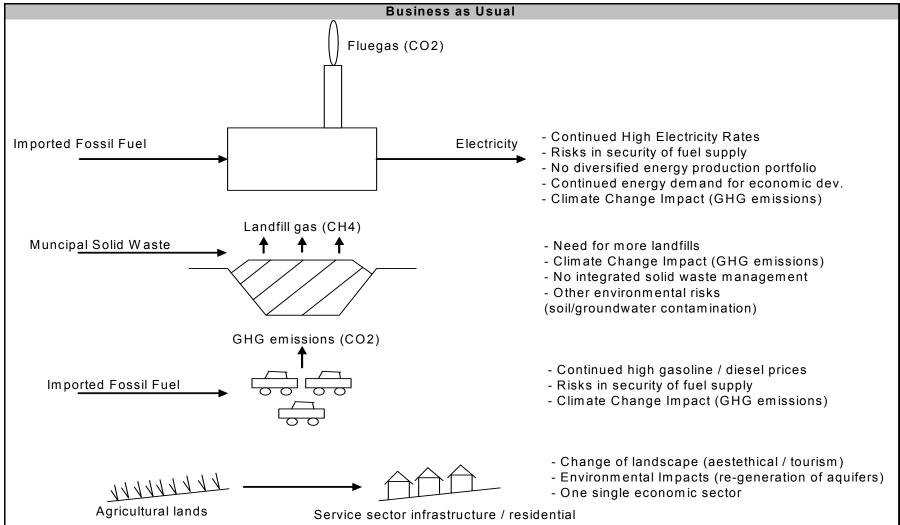


An Assessment of Bioenergy Opportunities in St. Kitts & Nevis

Mark Lambrides
Department of Sustainable Development
Organization of American States

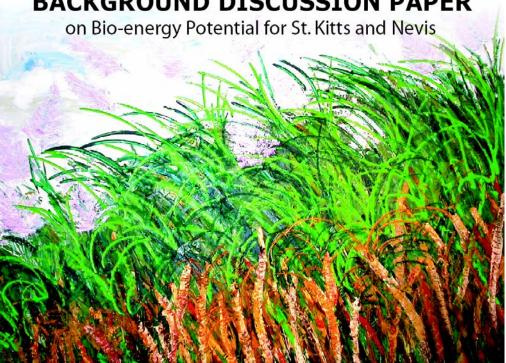
7 August 2007

Bioenergy: Why It Matters for St. Kitts & Nevis



- Shutdown of the sugar industry ... after 350 years of operation, resulting in:
 - Unemployment
 - Decreased sources of income
 - Loss of environmental and tourism benefits from sugarcane
- 100% of the electricity and transportation fueled by imported petroleum products, whose costs are costs are high and rising
- Environmental impacts associated with diesel generators and transportation fleets have negative effects on the environment and tourism economy
- Current waste management practices
 - Health impacts
 - Environmental impacts

Bioenergy: Why it Matters for St. Kitts & Nevis


Background of the assessment

- Global Sustainable Energy Islands Initiative (GSEII) OAS
 - Partners: Energy & Security Group, Climate Institute, OAS
 - Financial support from: UNIDO, UNF, RBF, REEEP, Governments of Austria, Italy and USA
 - Long-term collaborative support to catalyze transition to sustainable energy
 - Sustainable Energy Plans (SEPs)
 - Geothermal feasibility assessment, policy, and capacity building
- Request from SKN Federation Government for technical assistance in assessing potential for conversion of sugar cane to bioenergy

BACKGROUND DISCUSSION PAPER

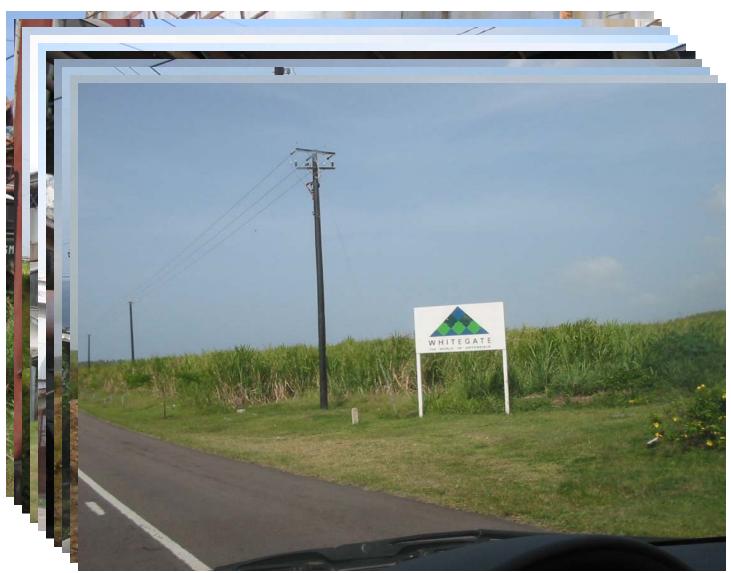
The General Secretariat of the Organization of American States (GS/OAS) And

Energy and Security Group (ESG) As part of the Global Sustainable Energy Islands Initiative

> Funded by UNF Executed by UNIDO

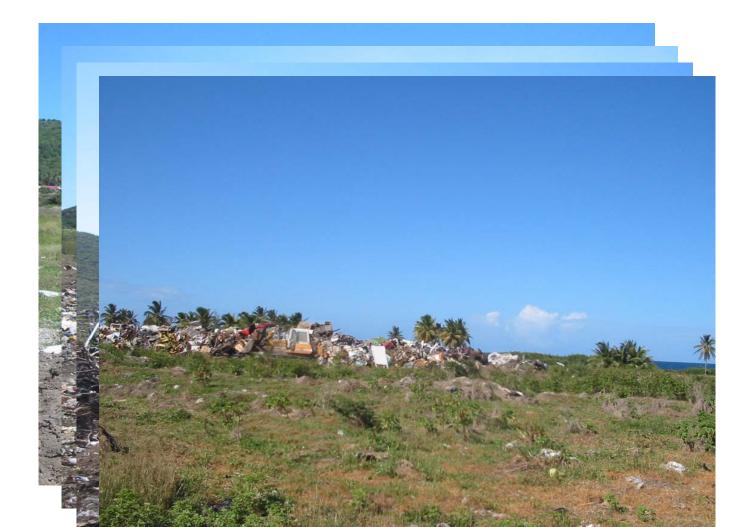
Methodology for the Assessment

- Broad stakeholder consultation
- Interviews with key local experts
- Data gathering/research via local sources, international, and other
- Regular consultation with government officials, sugar industry reps, electric utility
- Interviews with multiple international bioenergy industry reps
- Preparation of draft assessment report
- Consultation/reporting out on findings...


Considerations for the Assessment

- Product(s) should be profitable commercial
- Competing interests for the land (housing, hotels, golf courses, light industrial...)
- Product(s) should address multiple challenges (energy, reduce imports, protect the environment, create jobs...)
- All output scenarios assume improvements in infrastructure (i.e. transport system), agricultural practices (i.e. mechanized harvesting), and modern commercially available conversion technologies

Sugarcane in St. Kitts Today



Current state of waste management

What were the key inputs for the assessment?

What are the quantities and qualities of potential feedstocks? ... The Sugar Sector

EREA

DEPARTMENT OF SUSTAINABLE DEVELOPMENT

Parameter	Typical	Value range	Unit
Available cultivable area	6,000	5,500 – 6,500	acres
Sugarcane yield*	24.5	20.5 – 32.3	tons/acre
Average distance of fields to mill	12.4	10–15	Miles
Sugarcane production	147,000	112,750 – 209,950	tons/yr
Sugarcane production	1,225	805 – 2,100	tons/day
Sugarcane fiber content (d.m.)	18.5	-	% d.m.
Projected bagasse production	27,930	21,423 – 39,891	dry tons/yr
Average length of grow cycle	303	303 – 365	days/yr
Duration of crushing/harvesting season*	120	100 – 150	days/yr
Amount of reaping per ratoon planted	5	5 – 6	reaping/ratoon
Estimated cost of sugarcane as delivered to the processing plant*	32.7	32.7-49.5	US\$/ton
Amount of reaping per ratoon planted	5	5 – 6	reaping/ratoon

What are the quantities and qualities of potential feedstocks? ... Municipal Solid Waste

DEPARTMENT OF SUSTAINABLE DEVELOPMENT

Waste category	2004 Weight (ton)	Organic fraction (%)	BMW (ton)
Green waste	1,455	90	1,310
Household	10,390	42.5	4,416
Land clearing	3,514	<i>75</i>	2,636
Institutional	150	90	135
Sludge (Septic tank waste)	1,876	-	-
Ship generated waste	6	42.5	2.6
Total	\	\	8,500

What is the potential demand for bioenergy products? ... The Electricity Sector (St. Kitts only)

Current installed capacity: 33.5 MW (2005)

Peak demand: 20 MW

Firm capacity: 19 MW

Demand Growth from 2005-2015: 84.5%

Average electricity price in St. Kitts: .169 US\$/kWh (2005)*

Average electricity price in USA: .076 US\$/kWh (2004)

^{*}At diesel fuel cost of 1.588 US\$/gal, currently diesel fuel cost is 3.37 US\$/gal

What is the potential demand for bioenergy products? ... The Transportation Sector (St. Kitts only)

- 12,217 vehicles registered
- Majority of vehicles manufactured in 1970s & 1980s
- Gasoline imports approximately 3.3 million gallons at an estimated cost of US\$10.6 million
 - (2005 data)
- Ethanol export (CBI) potential...?

What are the Key Results of the Assessment?

Summary of the Results Scenario 1 – Focused on Ethanol Production

Input/Output	Average Value	Unit	Range
Land under cultivation	6,000	Acres	5,500 – 6,500
Sugarcane feedstock	147,000	Ton/yr	112,750 – 334,100
Ethanol Produced	2,736,872	Gallons/yr	2,099,199 – 6,220,332
Estimated Cost of Ethanol Production	2.13	US\$/gallon	1.856-2.867
Electricity Available to the Grid	8,609	MWh/yr	6,603 – 19,566
Estimated Cost of Electricity Production	0.087	US\$/kWh	0.075-0.117

Scenario Conclusions - Ethanol

❖ Price

- ❖The projected cost of producing ethanol in St. Kitts according to this study would exceed US\$2.00 per gallon (range: US\$1.85 to US\$2.87 per gallon.
- ❖This compares with ethanol production costs of approximately US\$0.75 per gallon in Brazil, US\$1.80 per gallon in the United States, and US\$1.40 per gallon in Guyana
- ❖Some pricing trade offs may be effective vis-à-vis electricity sales

Quantity

- ❖With batch blending of approximately 10% with gasoline -Approximately 409,619 gallons/year of ethanol may be utilized domestically (out of approximately 2.7 million gallons produced - As a result, an excess of 2.3 million gallons of ethanol would be available for export
- Remaining bagasse could be used for limited supplies of electricity

Summary of the Results for Scenario 2 - Focused on Electricity Production

Input/Output	Quantity	Unit	Notes; Cost range
Sugarcane feedstock required for 19.5 MW power plant	64,313 536	Ton/yr Ton/day	
Land required to product necessary sugarcane feedstock	2,625	Acres	
Estimated power conversion load factor	0.7		
Electrical efficiency	0.26		
Electricity to grid	39,484	MWh/yr	The entire electricity supply is generated and delivered during 100-150 days per year
Excess energy (heat)	52,684	GJ/yr	More primary energy available than consumed by the power plant
Estimated Cost of Electricity	0.13	US\$/kWh	0.085-0.170

Scenario Conclusions - Electricity

Price

- ❖The projected electricity production costs for St. Kitts according to this study are estimated at US\$0.13/kWh (range: US\$0.085 to US\$0.17/kWh)
- ❖This compares with an estimated electricity production cost US\$0.17/kWh; 2005)

Availability (timing and quantity)

- **❖Generation limited to harvest months (4-5 months per year)**; no irrigation; limited fuel storage potential
- **❖**Given limited production period, cane supplies could satisfy full demand during 100-150 days of generation, with >full use of land
- **❖**Cane juice available for rum, ethanol, or other by-products

Optimization Alternatives

Several alternative approaches may be considered:

- Import hydrated ethanol/combine with local product to produce product for export
- Consider sugar cane irrigation system and/or modified cane varieties to extend harvest season
- Adapt electricity generation system to co-fire with alternative fuels (i.e. coal) during non-harvest periods
- Utilize innovative electricity generation technologies (i.e. gasification)

What next in SKN?

- Consultations with SKN Federation Government
 - ❖August 28-30, 2007
 - ❖Move toward a commitment to proceed down bioenergy pathway
- Initiate partnership with US-Brazil Biofuels Agreement
 - SKN, Dominican Republic, Haiti, and El Salvador will participate
 - ♦ OAS, IADB, and others will support US and Brazilian governments in providing assistance
- Determine key land, infrastructure, ownership, sales, and other variables for development
- Initiate search for developer(s) [also considering prior expressions of Interest]
- Launch development ... continue collaboration...

What Lessons Learned May Apply to Other CARICOM Countries?

- Size matters
- Consider multiple energy products
- Advanced technologies will be key to solutions
- Energy efficiency must be part of the solution
- Local market structures matter
 - Electricity sector organizational arrangements (monopolies?)
 - Entrenched transportation fuel interests
 - Policies and bureaucracies
- Electricity Sector Organizational Arrangements

Thank you!

Mark Lambrides
Energy Division Chief
Department of Sustainable Development
(DSD)

mlambrides@oas.org