Geothermal Resource Prospecting in the Qualibou Caldera, Saint Lucia

By Frank Dale Morgan Geo-Caraibes Technical Team & Massachusetts Institute of Technology

March 2006

Outline

- History \rightarrow Summary
- Brief Review of Four MIT Studies
- Conclusion
- Recommendations

History

- Serious geothermal resource exploration began in the mid-70s by the British Geological Survey
- After dozens of investigations and nine drilled holes, no real geothermal development has resulted to date.

Time Line

1951	British start formal investigation (Willmore)
1964	Tomblin performs detailed geology survey
1974	Institute of Geological Sciences (IGS) U.K. resistivity survey
1975-76	Seven wells drilled by IGS (Wells 1-7)
1976	Aspinall et al. perform seismic monitoring
1982	Aquater (Italy): Magnetotellurics, gravity, well data evaluation.
1983-84	Los Alamos (USA): Geology, geochemistry, geophysics
1987-88	USAID/UN: Drill two deep wells (SL1 & SL2)
1992	Geothermal Energy New Zealand: Gravity, resistivity, audio magnetotelluric resistivity
1998-Pesent	M.I.T.: Reinterpretation of British resistivity data, self potential geophysics, decision analysis
2004-Present	United Network of the Eastern Caribbean is commissioned to develop geothermal resources.

Geology

Geothermal Wells & Hot Springs

USAID (Aquater), 1987

Summary

- Very complex geology and hydrogeology
- The chemistry of the geothermal waters beneath the Sulphur Springs is quite severe.
- The geothermal reservoir cap rocks are weak.
- Exploration is best optimized by exploring for less hot – but less corrosive – waters away from the Sulphur Springs.

Synopsis of Four MIT Studies

- Reinterpretation of the British Line 9 resistivity data.
- 3D rendering of 2D resistivity inversions.
- Self Potential surveying.
- Geological/Geophysical data integration using a decision analysis method.

Reinterpretation of the British Line 9 Resistivity Data.

Data collected in 1974 by Lee and Greenwood, British Geological Survey

3D Rendering of 2D Resistivity Inversions.

All the British resistivity lines were inverted into 2D cross-sections and then rendered into 3D.

3D Resistivity Tomogram Southeast -to- Northwest

3D Resistivity Tomogram Northeast -to- Southwest

Self Potential Surveying

Small, millivolt electrical potentials were mapped, processed and interpreted throughout the Qualibou Caldera.

SP Survey Lines

Individual SP Lines

Correlation of observed SP anomalies and fault locations.

Interpolated SP Data

Geological/Geophysical Data Integration Using a Decision Analysis Method.

Eleven disparate data sets were jointly analyzed by a decision analysis methodology to determine possible drilling locations.

Method

Eleven datasets were used: Seismics, self potentials, fault structure, deep resistivity, shallow resistivity, geology, topography, wells/springs/geochemistry, shallow AMT, deep AMT, and residual gravity.

Group Result

Conclusion

Geothermal resource exploration in Saint Lucia is a very difficult endeavor because of:

- Geological complexity
- Highly corrosive geothermal waters.

Recommendations

- Explore for drilling locations away from the Sulphur Springs to balance improved water chemistry with lower temperatures.
- The probability of success will increase substantially by doing 3D resistivity/selfpotential geophysics to accurately locate drilling positions and to avoid the faux pas of the past.